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We study the stability of orientationally disordered crystal phases in a suspension of colloidal hard dumb-
bells using Monte Carlo simulations. For dumbbell bond length L /��0.4 with L the separation of the two
spheres of the dumbbell and � the diameter of the spheres, we determine the difference in Helmholtz free
energy of a plastic crystal with a hexagonal-close-packed �hcp� and a face-centered-cubic �fcc� structure using
thermodynamic integration and the lattice-switch Monte Carlo method. We find that the plastic crystal with the
hcp structure is more stable than the one with the fcc structure for a large part of the stable plastic crystal
regime. In addition, we study the stability of an orientationally disordered aperiodic crystal structure in which
the spheres of the dumbbells are on a random-hexagonal-close-packed lattice, and the dumbbells are formed by
taking random pairs of neighboring spheres. Using free-energy calculations, we determine the fluid-aperiodic
crystal and periodic-aperiodic crystal coexistence regions for L /��0.88.
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I. INTRODUCTION

Originally, hard dumbbells were studied as a suitable
model for simple nonspherical diatomic or polyatomic mol-
ecules, such as nitrogen and carbon dioxide. In particular, the
structure and thermodynamics of the fluid phase of hard
dumbbells were investigated, since the structure of molecular
liquids is mainly determined by excluded volume effects �1�.
Additionally, in order to understand the stable crystal struc-
tures in molecular systems, the solid-fluid equilibria of hard
dumbbells have been studied intensively by density-
functional theory �2,3� and computer simulations �4–6�.
However, for simple nonspherical molecules, effects other
than size and shape can play an important role, such as dis-
persion forces, Coulombic, and quadrupolar interactions.
This might explain the stability of the �−N2 crystal phase of
nitrogen, which is not a stable crystal structure for hard
dumbbells �4�. Still, hard dumbbells can be regarded as a
reference system for simple molecules in the same way that
hard spheres can serve as a reference system for monatomic
fluids.

Recently, new routes to synthesize colloidal dumbbells
have become available and the interest in dumbbells has
been revived �7–9�. However, the size distributions of these
dumbbells is relatively large and often the quantities that can
be synthesized are very small. A new method has been pro-
posed to synthesize large quantities of monodisperse colloi-
dal dumbbells for which the aspect ratio can be tuned very
easily �10�. In this method, the anisotropic particles are
formed by destabilizing a dispersion of colloidal silica
spheres resulting in an initial aggregation of the spheres, i.e.,
dumbbell formation. Subsequently, a layer of silica is grown
around these cores to obtain a dumbbell of any length-to-
diameter ratio L*=L /�, where L is the distance between the
centers of the spheres and � is the diameter of the dumbbell.
By adding salt to the solvent, the dumbbell interactions can
be tuned from hard to long-range repulsive interactions.
Moreover, interest in colloidal dumbbells has been triggered
by their potential use in photonic applications. In a photonic

band-gap crystal, light of certain frequencies cannot propa-
gate, irrespective of its direction or polarization. Photonic
band-gap calculations show, however, that a complete band
gap is not possible in a simple system of spherical particles,
while a complete band gap can be opened by using slightly
anisotropic particles �11,12�. For instance, it has been shown
that dumbbells on a face-centered-cubic �fcc� lattice in which
the spheres of the dumbbells form a diamond structure ex-
hibit a complete band gap �11,12�. Unfortunately, this crystal
structure is not stable in the bulk, but it does show that an-
isotropic particles are promising for photonic applications.
The availability of this new model system of colloidal dumb-
bells and their potential use for photonic applications war-
rants a more detailed study of the phase behavior of these
particles.

Previous computer simulation studies of hard dumbbells
have shown the stability of at least three different solid
phases. For small anisotropies and low densities, the dumb-
bells form a plastic crystal phase in which the particles are
on an fcc lattice, but are free to rotate. At sufficiently high
density, the orientationally ordered crystal phase �called CP1
in Ref. �4�� becomes stable for all anisotropies. In the or-
dered solid phase, the dumbbells are arranged into two-
dimensional hexagonal close-packed �hcp� layers in such a
way that the spheres of each dumbbell also form a hcp layer.
The orientations of the dumbbells are parallel with an angle
of arcsin�L* /�3� between the dumbbell axis and the normal
of the hexagonal layers. The hexagonal layers of dumbbells
are stacked in an ABC sequence, so that the spheres form an
fcc crystal structure. At larger anisotropies, the particles can
freeze into an aperiodic crystal in which not only their ori-
entations but also the centers of mass of the dumbbells are
disordered, although the spheres of each dumbbell are on a
random-hexagonal-close-packed �rhcp� lattice at L*=1 and
at close packing. When L* is smaller than the lattice con-
stant, the spheres must be slightly off-lattice and then the
crystal is truly aperiodic in all the coordinates. Monte Carlo
simulations have shown that the aperiodic crystal is more
stable than the ordered solid in a two-dimensional system of
hard dimers �13–16�.
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The stability of an aperiodic crystal structure for a three-
dimensional system of hard dumbbells has been proven by
free-energy calculations and theory in Ref. �17�, but only for
L*=1.

In the present paper, we first address the question of
whether the fcc or hcp structure of the plastic crystal has the
lowest free energy for hard dumbbells. The fcc and hcp
structures both consist of hexagonally close-packed layers,
but they differ in the way the planes are stacked. The stack-
ing sequence for fcc is ABC, while it is ABAB for hcp. The
question of which configuration is the most stable structure
for hard spheres has been a long-standing issue in the litera-
ture. However, it is now well-accepted that the fcc crystal is
more stable, although the free-energy difference is very
small, �10−3kBT per particle, with kBT the thermal energy,
kB Boltzmann’s constant, and T the temperature �18–21�. In
this paper, we show that the hcp structure is more stable for
hard dumbbells for a large part of the stable plastic crystal
regime. Furthermore, the free-energy difference is more than
an order of magnitude larger than in the case of hard spheres.

In the second part of this paper, we study the stability of
an orientationally disordered aperiodic crystal structure for
L*�0.88. We confirm that the aperiodic crystal structure is
stable for hard dumbbells and we determine the fluid-
aperiodic crystal and aperiodic-periodic crystal coexistence
regions using free-energy calculations. However, to the best
of our knowledge, we are not aware of any atomic counter-
part of the aperiodic crystal phase of hard dumbbells, or any
evidence of a colloidal aperiodic crystal structure. We hope
that our findings will stimulate a more detailed experimental
investigation of the phase behavior of �colloidal� dumbbells.

II. MODEL

We consider a system of hard dumbbells consisting of two
fused hard spheres of diameter � with the centers separated
by a distance L. We define the reduced bond length or aniso-
tropy of the dumbbell by L*�L /�, such that the model re-
duces to hard spheres for L*=0 and to tangent spheres for
L*=1. We study the phase behavior of hard dumbbells using
computer simulations for 0�L*�1. We focus our attention
on the plastic crystal phase for L*�0.4 and the aperiodic
crystal phase for L*�0.9. Below we describe the simulation
methods that we employ to study the plastic crystal and the
aperiodic crystal structures.

III. METHODS AND RESULTS

A. Plastic crystal: hcp vs fcc

We calculate the free energy of both the fcc and the hcp
plastic crystal phase by thermodynamic integration using the
Einstein crystal as a reference state �22�. The Einstein inte-
gration scheme that we employ here involves the usual inte-
gration over a path through parameter space that connects the
system of interest with the noninteracting Einstein crystal,
without crossing a first-order phase transition. This means
that the Einstein crystal must have the same symmetries as
the plastic crystal phase. In particular, the dumbbells must be

free to rotate, while the centers of mass are fixed to their
ideal lattice positions using a harmonic spring with dimen-
sionless spring constant �. The potential energy function for
the harmonic coupling of the particles to their ideal lattice
positions reads

�U�rN,uN;�� = ��
i=1

N

�ri − r0,i�2/�2, �1�

where ri and ui denote, respectively, the center-of-mass po-
sition and orientation of dumbbell i, r0,i is the lattice site of
particle i, and �=1 /kBT. The usual thermodynamic integra-
tion path for hard spheres consists of a gradual increase of �
from 0, i.e., the system of interest, to �max, where �max is
sufficiently high that the system reduces to a noninteracting
Einstein crystal. However, this method fails in the case of
freely rotating hard dumbbells as the system will never reach
the limit of a noninteracting Einstein crystal due to the rota-
tional degrees of freedom of the dumbbells: if the lattice
constant is smaller than �+L, the dumbbells will collide
while rotating even if their centers of mass are fixed at their
lattice sites. We therefore combine the usual Einstein integra-
tion method with the thermodynamic integration technique
that was introduced recently for hard spheres by Fortini et al.
�23�, which is based on penetrable potentials that allow us to
change gradually from a noninteracting system to a system
of freely rotating hard dumbbells. We changed the dumbbell-
dumbbell potential energy function to

�Usoft�rN,uN;	� = �
i�j

�

,�

����ri
 − r j��,	� �2�

with

���r,	� = 		�1 − A�r/��2� , r � � ,

0 otherwise,
�3�

where ri
 with 
= 
1 are the positions of the two spheres of
dumbbell i, A is an adjustable parameter that is kept fixed
during the simulation at a value A=0.9, and 	 is the integra-
tion parameter. The limit 	→� reduces to the hard-core in-
teraction, but convergence of the thermodynamic integration
is already obtained for 	max=200. In Ref. �23� it was shown
that in order to minimize the error and maximize the effi-
ciency of the free-energy calculation, the potential must de-
crease as a function of r and must exhibit a discontinuity at r
such that both the amount of overlap and the number of
overlaps decrease upon increasing 	. Here, we have chosen
this particular form of the potential because it can be evalu-
ated very efficiently in a simulation. We start at a very high
value of 	max=200 where the particles behave as hard dumb-
bells. Subsequently, we turn on the springs that couple the
dumbbells to the lattice by increasing � from 0 to �max. We
then decrease 	 to 0 such that the system becomes an ideal
Einstein crystal. By integrating over both paths and adding
the free energy of the noninteracting Einstein crystal, one
obtains the Helmholtz free energy F of a plastic crystal of
hard dumbbells,
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�F�N,V,T� = �FEinst�N,V,T� − 

0

�max

d�� ��F

��
�

	max

+ 

0

	max

d	 � ��F

�	
�

�max

, �4�

where


��F/��� =��
i=1

N

�ri − r0,i�2/�2�
and


��F/�	� = 
�Usoft�rN,uN;	�/	� .

The Helmholtz free energy of the noninteracting Einstein
crystal plus the center-of-mass correction terms �22� reads

�FEinst = −
3�N − 1�

2
ln� �

�max
� + N ln��t

3

�3�
+ N ln��r� + ln� �3

VN1/2� , �5�

where �t= �h2 /2�mkBT�1/2 denotes the de Broglie wave-
length and �r= �h2 /8�2IkBT�1/2 with m the mass and I the
moment of inertia. We determine the Helmholtz free energy
Ffcc and Fhcp of the fcc and hcp plastic crystal, respectively,
as a function of the reduced density �* and anisotropy
0.1�L*�0.4. We define the dimensionless density as

�* =
d3N

V
, �6�

where d3 /�3=1+ 3
2L*− 1

2 �L*�3 is the volume of a dumbbell
divided by that of a sphere with diameter �, so d is the
diameter of a sphere with the same volume as the dumbbell.
The initial configurations for the plastic crystal are generated
by placing the dumbbells on an fcc or hcp lattice and by
picking random directions for the dumbbells until the dumb-
bells do not overlap anymore. For state points close to the
plastic crystal-CP1 coexistence region, we use isobaric-
isothermal �NPT� simulations to generate initial configura-
tions. We perform simulations of 864 particles for the fcc and
900 particles for the hcp plastic crystal. We use a 20-point
Gauss-Legendre integration for both the 	 and � integration.

We find that for L*=0.05 and 0.1 at low densities, the
free-energy difference is very small, �0.001kBT per particle.
As the free energies of the fcc and hcp plastic crystal are
almost equal, subtracting the free energies will give rise to
large errors in the free-energy differences. Moreover, we find
that the result of the 	 integration depends on the precise
details of the numerical integration method. This dependence
is small compared to the free energy of either phase, but it is
a significant error relative to the free-energy difference be-
tween the phases. In order to circumvent this problem, we
measure directly the free-energy difference in a single simu-
lation using the so-called lattice-switch multicanonical
Monte Carlo method �21�. This method has been used suc-
cessfully to calculate the difference in free energies of the fcc
and hcp phase for hard spheres �19–21�. Below, we discuss

briefly the method and its extension to dumbbells. For
a detailed description of the method, we refer the reader
to Ref. �21�.

The lattice-switch Monte Carlo method is based on a
lattice-switch transformation that maps an fcc configuration
onto an hcp configuration, and vice versa. This enables us to
sample in a single simulation both crystal structures and to
measure the difference in free energies by measuring the
probability to find the system in one of the two phases. To
this end, we express coordinate ri of particle i in terms of its
displacement �ri from its ideal lattice position Ri

��� in phase
�, i.e., ri=Ri

���+�ri. A lattice switch from lattice � to lattice
� is then defined by ri=Ri

���+�ri→Ri
���+�ri, for particles

i=1, . . . ,N. In the present work, we fixed the orientations of
the dumbbells during the lattice switch. The states for which
we can perform the lattice switch without causing any over-
laps are rare. We therefore bias the sampling to favor the
gateway states, which allows us to perform the lattice switch.
We define an order parameter that measures how close we
are to those gateway states,

M���r�� = M���r�,hcp� − M���r�,fcc� , �7�

where M���r� ,�� denotes the number of overlaps in the
configuration where the particle positions are given by the
set of displacements ��r� in phase �. For an fcc structure,
M�0, while an hcp structure corresponds to M�0. If
M=0, there will be no overlaps in both the fcc and hcp
structure, and a lattice switch will be successful. By assign-
ing multicanonical weights exp�
�M�� to each macrostate
M, we can bias the system toward the switching states,
where M=0.

We first measure the probability distribution P�M� of be-
ing in state M for an unbiased system, i.e., multicanonical
weights 
�N�=0. Subsequently, we use the P�M� to define
the multicanonical weights in the biased sampling for the
next simulation using


�M� = − ln�P�M�� + C0, �8�

where C0 is an arbitrary constant. In this simulation, we mea-
sure the biased probability distribution correct for the bias to
obtain the new estimate for P�M� and use the above expres-
sion to get the new weights. We repeat this process until the
measured probability distribution in the biased simulation is
essentially flat. We then use these weights in a long simula-
tion to calculate the final P�M�.

The probability P�M� can either be measured directly in
a simulation by the number of times a macrostate is visited,
i.e., the visited-state �VS� method, or one can measure in a
simulation the bias-corrected transition probability matrix
��M→N� of going from state M to N and use the “detailed
balance” condition

P�M���M → N� = P�N���N → M� �9�

in order to obtain P�M�, i.e., the transition probability �TP�
method.

We use the lattice-switch Monte Carlo method to measure
directly the Helmholtz free energy in a simulation of 1728
particles. We expect the finite-size effects to be small for this
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system size. We use the transition probability method to de-
termine the set of multicanonical weights. In Fig. 1, we show
the Helmholtz free-energy difference Fhcp−Ffcc using the
Einstein crystal thermodynamic integration method and the
lattice-switch Monte Carlo method as a function of �* �and
packing fraction ����d3 /6�N /V� for varying L*. Figure 1
clearly shows that the stability of hcp with respect to fcc
increases upon increasing L*. It is striking that even for
L*=0.05, hcp is more stable for sufficiently high densities,
since it is well known that the fcc phase is the most stable
one for hard spheres. For L*�0.1, the hcp plastic phase is
stable for all densities that we considered. Furthermore, the
absolute value of the Helmholtz free-energy difference in-
creases by more than an order of magnitude upon increasing
L*. The maximum value of the Helmholtz free-energy differ-
ence per particle that we find is 0.023�2�kBT for L*=0.35,
which is more than a factor of 20 larger than the free-energy
difference for hard spheres at close packing.

B. Aperiodic vs periodic crystal

We now turn our attention to the stability of the aperiodic
crystal phase with respect to the periodic crystal structure. At
large anisotropies and sufficiently high densities, we expect
the aperiodic crystal phase to be stable.

1. Aperiodic crystal phase

In an aperiodic crystal at close packing and L*=1, the
individual spheres of the dumbbells are arranged on a close-

packed fcc lattice, while the dumbbells, which can be con-
sidered as bonds between two sites, are chosen randomly. In
the remainder of the paper, such an arrangement is referred
to as a bond configuration. If there are �aper possible bond
configurations that all have the same free energy Fconf, the
total free energy of the aperiodic crystal reads

�F = − ln �aper + �Fconf. �10�

Ignoring the slight variation of Fconf for now, we average
Fconf over several typical aperiodic bond configurations and
use this value. Furthermore, we approximate �aper by the
multiplicity at close packing and L*=1. We note, however,
that �aper may depend on density and L*, which we ignore
here for simplicity.

In order to determine the multiplicity of the aperiodic
crystal �aper at close packing and L*=1, we introduce a
method that allows us to switch from the aperiodic crystal
phase to a reference phase of which the degeneracy is
known, and vice versa. By measuring the probability that the
system is in either of the two phases, we can determine the
multiplicity of the aperiodic phase,

�aper = Paper/Pref � �ref, �11�

where the subscript “ref” denotes the periodic reference
phase.

For the reference phase, we use the so-called CP3 phase,
which is the phase where all the dumbbells are arranged into
two-dimensional hexagonal layers with all the particles, as in
the CP1 phase, aligned in the same direction within the hex-
agonal layer, while the tilt angle alternates between succes-
sive layers. However, in order to form a close-packed crystal,
the particles in different hexagonal layers can point in three
different directions, yielding a certain degeneracy for the
CP3 phase as well. The degeneracy of CP3 can be calculated
by considering all 3Nz possibilities for the directions of the Nz
hexagonal layers, and by correcting for the number of possi-
bilities that are identical if one takes into account the peri-
odic boundary conditions in the z direction.

In order to measure the probability ratio as defined in Eq.
�11�, we first define an order parameter that enables us to
distinguish the CP3 phase from the aperiodic phase. We de-
fine the parallel bond order parameter N� 1

4�i=1
2N � j=1

6 f ij,
where the first sum runs over all sites i of the lattice and the
second sum runs over the six nearest neighbors j of site i
within the same layer. If the dumbbell, which has a sphere on
site i, is parallel to the dumbbell that has a sphere on site j,
f ij =1, otherwise f ij =0. Since every bond is counted twice
and the number of parallel bonds can change by a minimum
of two, the factor 4 ensures that N changes by at least 1 if we
change the bond configuration. For the CP3 phase,
N=2N�6 /4=3N, since all six neighbors of all 2N sites are
parallel in this phase.

We now introduce a MC move that allows us to generate
a new configuration of bonds with a different value of N.
This bond switch move involves disconnecting and recon-
necting bonds until a new configuration is found. For more
technical details, we refer the reader to Appendix A. We now
employ the bond switch move for a random hcp crystal
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FIG. 1. The difference in the Helmholtz free energies of the hcp
plastic crystal Fhcp and the fcc plastic crystal Ffcc as a function of �*

and �= ��d3 /6�N /V for different L*=0.05,0.1, . . . ,0.35 from top
to bottom. The free-energy difference at L*=0.05 and the one at
L*=0.1 with �*�1.2 are results from the lattice-switch Monte
Carlo calculations �error bars are smaller than the symbols�, while
all other points are obtained using the Einstein integration method.
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phase with L*=1. We use the multicanonical Monte Carlo
method to measure the probability �P�N�� of being in state
N using weights 
�N�, which are refined using the VS
method. The probability ratio reads simply

Paper

PCP3
=

�
N�3N

P�N�

P�N = 3N�
. �12�

In Fig. 2, we plot the probability distribution P�N� of the
parallel bond order parameter N for systems with varying
particle numbers N. We note that the probability distribution
P�N� has a maximum of about exp�1.5N� at N /N�0.25. In
Fig. 3, we plot the degeneracy of the aperiodic crystal phase
as a function of the number of particles N. For comparison,

we also plot the theoretical result of Ref. �24�, and we find
good agreement for N�256.

We determine Fconf at L*=1 using the Einstein integration
method as described above for the plastic crystal phase.
However, we include an additional coupling of the orienta-
tion of dumbbell i, i.e., ui, to an aligning field. The potential
energy function that we use to achieve both couplings reads

�U�rN,uN;�� = ��
i=1

N

�ri − r0,i�2/�2 + �
i=1

N

��1 − �cos��i0���

+ �Usoft�rN,uN;	� , �13�

where �i0 is the angle between ui and the ideal tilt vector of
particle i. The ideal tilt vectors of all particles are measured
in an NPT simulation. The free energy of the hard dumbbell
system �F�N ,V ,T� can now be related to the known free
energy of an Einstein crystal by thermodynamic integration,

�F�N,V,T�

= �FEinst�N,V,T� − 

0

�max

d���
i=1

N

�ri − r0,i�2/�2�
	max

− 

0

�max

d���
i=1

N

��1 − �cos��i0����
	max

+ 

0

	max

d	 
�Usoft�rN,uN;	�/	��max
. �14�

The Helmholtz free energy of the noninteracting Einstein
crystal plus the center-of-mass correction terms �22� reads

�FEinst = −
3�N − 1�

2
ln� �

�max
� + N ln��t

3

�3�
+ N ln��r� + ln� �3

VN1/2� − N ln�J��max�� , �15�

where

J��� = 

0

1

e��x−1�dx =
1 − e−�

�
. �16�

We perform the Einstein crystal thermodynamic integration
method for an aperiodic crystal with L*=1 averaging over
ten different bond configurations; see Table I. The initial con-
figurations of aperiodic crystal structures for these and all
other simulations of aperiodic crystals were obtained in two
steps. First, we generated ten configurations of dumbbells
with L*=1 at close packing, using moves similar to bond
switch moves. Secondly, starting at L*=1, then decreasing
L* in steps of 0.01, we measured the average configuration in
an NPT simulation with P*=100, which was stored to be
used as an initial configuration for the simulation at the next
L* and for all further simulations of the aperiodic phase.

The Helmholtz free energy of the hard dumbbell systems
for lower L* and arbitrary density �* is obtained by the fol-
lowing thermodynamic integrations:
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FIG. 2. The probability distribution ln P�N� of the parallel bond
order parameter N for systems with varying particle numbers N.
The inset shows an enlarged view of the region where P�N� is
maximal.
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FIG. 3. The logarithm of the degeneracy of the aperiodic crystal
as a function of the number of particles N. “meas” denotes the
measured free-energy difference between CP3 and the aperiodic
phase, in “meas+CP3” the degeneracy of CP3 is included, and
“Nagle” denotes the theoretical result ln�4.5693��1.519 �24�.
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�F��1
*,L*� = �F��0

*,L*� + 

�

0
*

�
1
*

d���P��,L�
�2 � , �17�

�F��*,L1
*� = �F��*,L0

*� + 

L

0
*

L
1
*

dL� ��F��*,L�
�L

� . �18�

The integrand in Eq. �17� is calculated using standard NPT
simulations, in which we measure the density and average
over five different bond configurations. Alternatively, we use
bond switch moves in NPT simulations of N−1 dumbbells
and two hard spheres to calculate the density; see Appendix
A. In Figs. 4 and 5, we show the equation of state for five
different aperiodic crystal structures at L*=1 and 0.92, re-
spectively. These were obtained in simulations without bond
switch moves. We observe that the equations of state of all
five aperiodic crystal structures are almost indistinguishable.

The derivative of the free energy with respect to the elon-
gation L* in Eq. �18� is determined using �25�

� ��F��*,L�
�L

� = −
1

2
lim
r↓�
��

i�j
�

,�

���ri
 − r j�� − r�

�
ri
 − r j�

�ri
 − r j��
· �
 ui − �u j��

−
3N�1 − �L*�2�

2 + 3L* − �L*�2

�P

�
, �19�

where the latter term arises as the free-energy derivative is
determined at fixed �*, rather than at fixed ���3N /V. Using
a similar expression, the pressure in this term is calculated,

�P

�
= 1 +

1

3N
lim
r↓�
��

i�j
�

,�

� ��ri
 − r j�� − r�

�
ri
 − r j�

�ri
 − r j��
· �ri − r j�� . �20�

This expression is the equivalent of the virial expression for
the pressure of hard spheres, �P /�=1+4� limr↓�g�r�, where
�= ���3 /6�N /V is the packing fraction. We checked that the
integration of 
��F /�L� yields the same results within the
statistical error as those obtained from the Einstein integra-
tion method. Both the virial expression for the pressure and
the expression for 
��F /�L� require an extrapolation of r to
�. This can only be done reliably if the function to extrapo-
late is nearly linear, which corresponds to restricting the
function to a very small interval range near �. To get suffi-
cient accuracy on this small interval, we need to run long
simulations. For this reason, we do not use the virial expres-
sion for the pressure to obtain the equation of state; instead,
we use NPT simulations. We perform standard NVT simula-
tions to measure 
��F /�L� and we average over the ten ini-
tial configurations mentioned above. Alternatively, we use
bond switch moves in NVT simulations of N−1 dumbbells
and two hard spheres to calculate 
��F /�L�; see Appendix
B.

TABLE I. Excess free energies, fexc��F−Fid� / �NkBT�, of the
aperiodic and periodic phase, where Fid is the ideal gas free energy.

Phase L* �* fexc

aper 1 1.15 13.887�7�
CP1 1 1.181 14.176�2�
CP1a 1 1.15 13.45

CP1 0.95 1.216 14.555�3�
CP1a 0.95 1.181 11.28

CP1 0.88 1.2283 14.172�3�
CP1a 0.88 1.181 10.71

aCalculated using thermodynamic integration �17�.
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FIG. 4. The dimensionless pressure as a function of density for
five different bond configurations of the aperiodic phase �aper� and
for the periodic CP1 phase at L*=1. The six curves are
indistinguishable.
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FIG. 5. The dimensionless pressure as a function of density for
five different bond configurations of the aperiodic phase �aper� and
for the periodic CP1 phase at L*=0.92. The inset shows an enlarge-
ment to be able to distinguish the pressures of the different configu-
rations of the aperiodic phase.
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Figure 6 shows that 
��F /�L� is negative and that its
absolute value decreases with L* if no bond switch moves
are used. However, if bond switch moves are employed,

��F /�L� is actually positive and its dependence on L is
much reduced and nonmonotonic. Although 
�F /�L*� /N is
rather large �in absolute value� compared to kBT, the free-
energy difference as calculated by the integral in Eq. �18� is
never very large for the aperiodic phase. This is because the
integration interval is no larger than the small region
�0.9�L�1� where the aperiodic phase is stable.

2. Periodic crystal structure (CP1)

In order to obtain the lattice direction and lattice constant
for the CP1 phase, we perform NPT simulation with a vari-
able box shape �26�, as the lattice direction changes as a
function of density and L* �4�. We employ these configura-
tions in the Einstein crystal thermodynamic integration
method as described in Eqs. �13�–�15� to obtain the Helm-
holtz free energy for varying L*; see Table I. We perform
NPT simulations to obtain the equation of state for varying
L*. We plot the equation of state for the CP1 phase in Fig. 4
and we find that the equation of state is indistinguishable
from those of the aperiodic crystal structure for L*=1. For
comparison, we plot the equation of state of the CP1 phase
for L*=0.92 in Fig. 5. We clearly see that the pressure P* is
higher for the aperiodic crystal structure than for the CP1
phase, as the dumbbells fit less efficiently in the aperiodic
crystal structure upon decreasing L*. We obtain the Helm-
holtz free energy as a function of �* by integrating the equa-
tion of state of CP1 for varying L*; see Eq. �17�.

3. Fluid phase

We employ the equation of state of Tildesley and Street
for the fluid phase of hard dumbbells, which is known to be
very accurate �1�.

4. Phase diagram

We determine the fluid-plastic crystal, fluid-aperiodic
crystal, and the aperiodic-CP1 crystal coexistence by em-
ploying the common tangent construction to the free-energy
curves. The resulting phase diagram, together with the data
from Refs. �4,5� for L*�0.9, is shown in Fig. 7. We checked
that the phase boundaries for the fluid-hcp plastic crystal and
the hcp plastic crystal-Cp1 coexistences hardly change com-
pared to the results from �4,5� for the fcc plastic crystal
phase. We find for L*�0.92 a fluid-aperiodic crystal phase
coexistence at low densities and an aperiodic-CP1 crystal
phase coexistence region at higher densities. The stable re-
gion of the aperiodic crystal phase increases upon increasing
L*→1. If we measure 
�F /�L� and P in simulations that
include bond switch moves, the coexistence lines shift
slightly, such that the aperiodic phase is stable in a larger
region of the phase diagram, at the cost of the stability of the
CP1 phase and, to lesser extent, the fluid phase; see Fig. 8. In
Table II, the resulting coexistence data of both methods are
tabulated.

If we compare our densities of the fluid-aperiodic crystal
coexistence, �

fluid
* =0.976 and �

aper
* =1.085, with Ref. �17�, we

find a small deviation from their simulation results,
�

fluid
* =0.990 and �

aper
* =1.105, while the theoretical results

obtained from an extension of the Wertheim theory �27�,
�

fluid
* =0.983 and �

aper
* =1.094, agree slightly better with our

coexistence densities. We wish to note here that it is surpris-
ing that such a simple theory predicts the fluid-solid equilib-
rium very accurately, as many theories fail to predict the
freezing transition of molecular fluids.

IV. SUMMARY AND DISCUSSION

In this paper, we studied the phase behavior of hard
dumbbells. First, we investigated whether the fcc or the hcp
structure of the plastic crystal of hard dumbbells has the
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FIG. 6. The derivative of the free energy 
 ��F
�L*

��per dumbbell in
units of kBT� with respect to L* at �*=1.15 for the aperiodic phase.
“NVT” are the results obtained from standard NVT simulations and
averaged over 10 different bond configurations. “switch moves”
denotes the results obtained from single simulations with bond
switch moves.

0.9
0.95

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35

0 0.2 0.4 0.6 0.8 1

0.5

0.55

0.6

0.65

0.7

ρ* φ

L*=L/σ

F

CP1

aper

FIG. 7. �Color online� The phase diagram of hard dumbbells in
the �* �and packing fraction �� versus L*=L /� representation. F
denotes the fluid phase and CP1 the periodic crystal. The aperiodic
phase �aper� is stable only in a narrow region of the phase diagram.
The stable fcc type plastic crystal is denoted by filled squares, the
hcp plastic crystal phase is denoted by empty squares. The coexist-
ence densities for L*�0.9are taken from Refs. �4,5�.
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lowest free energy. We calculated the Helmholtz free ener-
gies of the hcp and fcc plastic crystal using the Einstein
integration method and the lattice-switch multicanonical
Monte Carlo method. We have shown that the hcp structure
is more stable for hard dumbbells for a large part of the
stable plastic crystal regime. This should be contrasted with
hard spheres �L*=0� for which fcc is more stable than hcp
for all densities. The free-energy difference between hcp and
fcc increases with L. The maximum free-energy difference is
about 0.02NkBT, a factor of 20 higher than that of hard
spheres. The fact that this difference grows with L might be
explained by the difference in available volume for a dumb-
bell in a fcc or hcp crystal structure. If one considers a per-
fect frozen fcc or hcp crystal structure with a subset of par-
ticles that are moveable, one can expand the entropy of the
fcc or hcp crystal structure into the volume available for one,
two, three, four, etc. moveable dumbbells in the cage formed
by all the frozen particles �28�. For hard spheres, the avail-
able volume for a single sphere is identical for hcp and fcc,
but the available volume for a pair of spheres is larger at
close packing for the hcp phase, which would suggest that
hcp is more stable for hard spheres. However, the available
volume for five moveable spheres is higher for fcc than for

hcp, and hence the fcc phase is more stable. As it is not
possible to calculate higher-body corrections, one cannot
draw any definite conclusions for hard spheres on the basis
of this expansion. For dumbbells with a finite anisotropy, the
free volume of a single dumbbell in the cage formed by its
neighbors is different for fcc than for hcp. The difference in
the available volume of a single moveable dumbbell in-
creases with L*, which might explain the increase in free-
energy difference as L increases. However, as we did not
include any higher-body corrections, we have to take this
with a grain of salt. Furthermore, we conclude that including
the hcp phase does not change the fluid-plastic crystal phase
boundary.

In the second part of this paper, we studied the stability of
an orientationally disordered aperiodic crystal structure for
L*�0.88. We first determined the degeneracy of the aperi-
odic crystal phase using a bond switch move. Subsequently,
we calculated the free energy by varying methods, such as
the Einstein integration method, equation-of-state integra-
tion, and integration of the derivative of the Helmholtz free
energy with respect to the elongation of the dumbbells. Us-
ing the free-energy calculations, we showed that the aperi-
odic crystal structure is stable for hard dumbbells for
L*�0.92 or, if bond switch moves were used, L*�0.88 and
we have determined the fluid-aperiodic crystal and aperiodic-
periodic crystal coexistence. In conclusion, we have shown
the stability of two new crystal structures, i.e., the hcp plastic
crystal phase and the aperiodic crystal structure, in a system
of hard dumbbells. We hope that our results stimulate new
experiments on colloidal dumbbells with a focus on these
new structures.

APPENDIX A: BOND SWITCH MOVES
AT CLOSE PACKING

A �biased� bond switch move at close packing is very
similar to the configurational bias Monte Carlo �CBMC�
method �22�.

It consists of the following steps:
�i� Step 1. Choose a site of the lattice at random. This site

is called the loose end and its position is labeled r�1�. Break
the bond that connects the loose end to another site at r�0�.

�ii� Step 2 to n−1. Pick a nearest neighbor of the loose
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FIG. 8. �Color online� The large-L part of the phase diagram of
dumbbells with �dashed line� and without bond switch moves �solid
line� in �* �and packing fraction �� versus L*=L /� representation.
The lines are a guide to the eye. The stability of the aperiodic phase
�aper� increases if bond switch moves are included. CP1 denotes the
periodic crystal and F the fluid phase.

TABLE II. Densities, pressures, and chemical potentials �*=��−ln��t
3�r /�3� of the fluid-aperiodic crystal and the aperiodic crystal-

CP1 coexistences at various L*; see also Fig. 8.

Using standard MC simulations Using bond switch moves

L* phase 1 phase 2 �1 �2 �Pd3 �* L* phase 1 phase 2 �1 �2 �Pd3 �*

0.92 fluid aper 1.060 1.127 32.89 40.21 0.88 fluid aper 1.082 1.152 35.15 41.94

0.92 aper CP1 1.153 1.209 37.66 44.40 0.88 aper CP1 1.154 1.205 35.62 42.34

0.95 fluid aper 1.022 1.107 28.04 35.84 0.90 fluid aper 1.061 1.135 32.34 39.50

0.95 aper CP1 1.227 1.267 54.72 58.48 0.90 aper CP1 1.181 1.228 40.37 46.43

0.97 fluid aper 1.002 1.097 25.90 33.91 0.95 fluid aper 1.015 1.109 27.12 34.94

0.97 aper CP1 1.291 1.317 86.88 83.60 0.95 aper CP1 1.279 1.303 72.30 72.14

1.00 fluid aper 0.976 1.085 23.60 31.85 1.00 fluid aper 0.977 1.083 23.67 31.92
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end with probability Pi. We use Pi=exp�−�ui� /wi, where
ui=�b �ri−r�0��2, and wi=�kexp�−�uk�; the sum is over all
the neighbors of the loose end and ri is the position of neigh-
bor i. We disconnect the bond that paired this neighbor i with
another site at r�1�, which becomes the new loose end. In
this way, the loose end will make a trajectory throughout the
system.

�iii� Step n. After a certain number of steps, one of the
neighbors of the loose end is site r�0�. If this site is selected
we connect the loose end to r�0�. There are no loose ends
anymore in the system and the bond switch move is com-
plete. The length of the trajectory is determined by �b. An
example of the entire bond switch move on a hexagonal
lattice is depicted in Fig. 9. We note that in our simulations
bond switch moves are performed in three dimensions.

The bond switch move satisfies detailed balance as the
probability to generate the new bond configuration starting
with the old bond configuration equals the probability of
generating the old configuration from the new configuration,
since both probabilities are equal to products of the same
factors Pi, the only difference being the order in which the
factors occur.

APPENDIX B: OFF-LATTICE BOND SWITCH MOVES

For densities lower than close packing or if L*�1, not all
bond configurations are equally probable. However, if we are
able to construct a bond switch move that visits configura-
tions with a Boltzmann probability, i.e., that obeys detailed
balance, we can take this into account. Two problems arise
when one applies the bond switch move as it was defined in
the last section to lower �* and L*. First of all, the connec-
tion and reconnection step needs to be adjusted, as spheres
must be moved to detach from one dumbbell and attach to
another. Suppose that i is a single sphere at ri and j is a
dumbbell with direction vector u j and center-of-mass posi-
tion r j and that we wish to connect sphere 
= 
1 of dumb-
bell j to sphere i, turning particle i into a dumbbell with
direction vector ui� and center-of-mass position ri� and par-
ticle j into a sphere at r j�. The way to do this is

ui� = �ri − r j
�/a ,

ri� = r j
 +
L

2
ui�,

r j� = r j
 − a
u j , �B1�

where a= �ri−r j
 �; see Fig. 10. Note that the position of
sphere 
 of the dumbbell is fixed during the move. Still, the
first step of the bond switch move, disconnecting a dumbbell,
will involve making an arbitrary choice for a, and for the last
step, connecting two spheres, we must choose the acceptance
probability of a certain value for a. The second problem is
that, although the spheres are now moved to connect and
disconnect a dumbbell, the bond switch move will still fail
due to overlaps with the particles that are not directly in-
volved in the bond switch move. One can resolve this prob-
lem by combining the bond switch moves with displacement
moves of the particles. However, in this case one has to make
sure that each step in the bond switch move preserves de-
tailed balance, while in Appendix A only the entire bond
switch move preserves detailed balance. To this end, we ac-
cept the generated move with a probability of w�f� /w�r�,
where w�f� is the weight wi as occurring in a step in the bond
switch move and w�r� is the weight of the reverse move.

In this case, the system consists of N−1 dumbbells and
two spheres during one part of the simulation and of N
dumbbells during the other part. As a result, since the bond
switch moves will consist of varying the numbers of steps,
the sampling, which can only occur when the system consists
of only dumbbells, is biased. We decided, therefore, to use a
system of N−1 dumbbells and two spheres during the entire
simulation. An additional advantage is that we do not have to
bias the system anymore ��b=0�, since the trajectory of the
loose end throughout the system does not have to be closed.
The results of these simulations will be nearly equal to the
results of simulations of N dumbbells provided that N is
large enough and that the definitions of �F /�L and �* are
adjusted: �*���N−1�d3+2�3� /V, and we approximate
�F /�L of N dumbbells to N / �N−1� times �F /�L, as mea-
sured in our system of N−1 dumbbells and two spheres. In
our simulations, we used N=864, and we checked that
�F /�L and �* measured in a simulation of N−1 dumbbells
and two spheres without bond switch moves were nearly
equal to the results of a simulations with N dumbbells, with
a difference of the order of 1 /N.

before step 1 step 2 step 3 after

FIG. 9. An example of the bond switch move on a hexagonal
lattice. The dumbbells are denoted by thick lines, the loose spheres
by circles: r�0� is shown by the open circle and the loose end, r�1�
is shown by the filled symbol. The bond configuration is depicted at
the instant just after the bond indicated by a dashed line has been
disconnected and before a new bond is chosen.

i

j j
i

a

a

FIG. 10. A typical bond switch move for a non-close-packed
structure: particles are not positioned on a lattice.
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